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Abstract This paper investigates a distributed recursive projection identification problem with binary-

valued observations built on a sensor network, where each sensor in the sensor network measures partial

information of the unknown parameter only, but each sensor is allowed to communicate with its neigh-

bors. A distributed recursive projection algorithm is proposed based on a specific projection operator

and a diffusion strategy. The authors establish the upper bound of the accumulated regrets of the

adaptive predictor without any requirement of excitation conditions. Moreover, the convergence of the

algorithm is given under the bounded cooperative excitation condition, which is more general than

the previously imposed independence or persistent excitations on the system regressors and maybe the

weakest one under binary observations. A numerical example is supplied to demonstrate the theoretical

results and the cooperative effect of the sensors, which shows that the whole network can still fulfill the

estimation task through exchanging information between sensors even if any individual sensor cannot.

Keywords Adaptive predictor, binary-valued observations, cooperative excitations, distributed pa-

rameter estimation.

1 Introduction

Over the past two decades, the distributed estimation problem over sensor networks has at-
tracted widespread attention and has extensive practical applications, such as target positioning,
noise elimination, military surveillance and so on (see [1, 2]). But in most applications, sensors
are powered by batteries with finite lifetime, and thus have limited measurement and commu-
nication capabilities. Besides, the bandwidth of the communication network is constrained,
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which renders the transmission of vast amounts of real-valued data impractical. Therefore, it
is of importance to investigate the distributed estimation problem based on quantized data.

A number of distributed estimation algorithms have been developed (see [3–9]). For in-
stance, the mean-square and steady-state performance analyses of the diffusion least mean
square algorithm were studied in [3] with independent and identically distributed (i.i.d.) re-
gressors. And a distributed stochastic approximation algorithm was investigated for the case
of uncertain sensing and communication environments, and the convergence properties of the
algorithm were discussed under the persistent excitation (PE) condition in [4]. Gan and Liu
in [7] presented a distributed stochastic gradient algorithm to estimate the unknown parameter
by combining the consensus and diffusion strategies. Besides, Guo and his cooperators in [8]
proposed imaginatively a new distributed least-squares (LS) algorithm and obtained some ele-
gant results, such as the convergence of the algorithm under a non-PE condition. Most of the
distributed estimation studies, including the above works, are based on accurate communication
of sensor networks and accurate measurements of the sensors.

Meanwhile, there are also some studies about distributed estimation problems based on
quantized data, which could be divided into two classes. One is the distributed static param-
eter estimation with quantized communication (see [10–13]), where the sensor has accurate
measurements but only can exchange information with its neighbors utilizing quantized com-
munication. For example, the distributed static parameter estimation problem was investigated
within the “consensus+innovation” framework utilizing probabilistic quantized communication
(see [10, 11]). This problem was considered in [12] over sensor networks under bandwidth
constraint and showed that the proposed two-stage averaging-based algorithm achieved the
performance of the optimal centralized estimate even if the quantization error variances were
not vanishing. Besides, a distributed algorithm, combining a quantized consensus method and
the LS approach, was proposed in [13] to study the problem of sensor fusion over networks
with asymmetric links, and the performance of the algorithm was analyzed detailedly in terms
of unbiasedness and mean square property. The other is the distributed estimation based on
quantized observations, where the sensor can exchange information with its neighbors using
accurate communication but only has quantized measurements. For example, the distributed
parameter estimation problem was studied in [14] for linear systems with quantized observations
using normalized least mean square-based consensus algorithm, and the relationship between
estimation error and quantized parameter of the uniform quantizer is established.

Actually, binary-valued systems can be found in plentiful important application fields such
as engineering areas or bio-medical fields (see [15–17]), so the parameter estimation problem
under binary-valued observations has been investigated in many works. Moreover, numerous
parameter estimation methods are proposed under binary-valued observations, such as the off-
line methods including empirical measure method[17, 18], expectation maximization method[19],
and the online methods containing recursive projection algorithm[20, 21], recursive LS-type
algorithm[22, 23], sign-error type algorithm[24], stochastic approximation type algorithm[25, 26].
It is worth noticing that almost all of the online methods are the stochastic approximation type,
i.e., whose gains are scalar forms rather than matrix forms. The key difficulty of studying the
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matrix-form gain-based algorithms under binary-valued observations is analysing the properties
of asymmetric matrix products. It also limits the development of the distributed estimation
algorithms under binary-valued observations. Fortunately, Zhang, et al. in [27] overcame the
difficulty of matrix analysis by use of a special projection operator and studied the convergence
properties of an LS-like algorithm with matrix-form gain under non-PE conditions and binary-
valued observations. Enlightened by [27], this paper studies a distributed LS-like algorithm to
solve the distributed estimation problem with binary-valued observations.

This paper utilizes matrix inequalities and the martingale estimation theorem to overcome
the key difficulty of the distributed estimation problem under binary-valued observations, which
is the analysis of the cross items generated by estimation error and binary-valued observations.
In contrast to the previous works, the main contributions of this paper can be summarized as
follows.

• This paper proposed a distributed recursive projection algorithm to estimate the unknown
parameter under binary-valued observations, which is based on a specific projection op-
erator and the diffusion strategies of the neighbor estimates and covariance of regressors.
The upper bound of the accumulated regrets of the adaptive predictor is established with
no excitation condition. Moreover, the convergence of the proposed algorithm is given
under a bounded cooperative excitation condition.

• The cooperative excitation condition in this paper is weaker than persistent excitations
used in [20–23], and it might be the weakest one on the system signals under binary
observations. Moreover, comparing with the previous studies of parameter estimation
under binary measurements (see [17–19, 24–26]), the convergence analysis of the algorithm
in this paper does not need the previously imposed periodicity or independence on the
system signals. As a benefit, the results in this paper can be applied to feedback control
of stochastic systems with only binary-valued observations.

• This paper is inspired by [8] and [27], meanwhile there are some fundamental difficulties.
Before guaranteeing the recursions of the Lyapunov function like the method in [27] using
the special projection operator, we need to establish the relation between the Lyapunov
functions of estimation error after fusion and the one before fusion by some inequalities on
the convex combination of positive definite matrices. Besides, the observations of outputs
are not accurate but binary-valued compared with [8], hence this paper has to modify
the algorithm to deal with binary-valued observations and requires constructing a new
martingale difference to estimate the upper bound of the Lyapunov function.

The remainder of this paper is organized as follows. Section 2 introduces some preliminaries
on notations, graphs, and observation models. Besides, the distributed recursive projection
algorithm is presented. The main results are stated in Section 3, including the convergence of
the proposed algorithm and the property of the adaptive predictor. And the proofs of the main
results are provided in Section 4. Section 5 uses a numerical example to demonstrate the main
results. Section 6 gives concluding remarks and related future works.
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2 Problem Formulation

2.1 Some Preliminaries

In this paper, we use x ∈ R
n and A ∈ R

m×n to denote an n-dimensional vector and an
m × n-dimensional real matrix, respectively. We use ‖x‖ = ‖x‖2 and ‖A‖ =

(
λmax(AAT)

) 1
2

to denote the Euclidean norms of vector and matrix, respectively, where the notation T is
the transpose operator and λmax(·) denotes the largest eigenvalue of the corresponding matrix.
Correspondingly, we use λmin(·) to denote the smallest eigenvalue of the matrix, and tr(B) =
∑n

i=1 bii to denote the trace of matrix B = {bij} ∈ R
n×n. Obviously, if A is a positive semi-

definite matrix, then tr(A) ≥ ‖A‖. Let A ∈ R
n×n and B ∈ R

n×n be two symmetric matrices,
then A ≥ B means that A − B is a positive semi-definite matrix. The Kronecker product of
two matrices A ∈ R

m×n and B ∈ R
p×q is defined as A ⊗ B ∈ R

mp×nq. And |B| denotes the
determinant of the matrix B ∈ R

n×n. Besides, the function I{·} denotes the indicator function,
whose value is 1 if its argument (a formula) is true, and 0, otherwise.

In order to describe the relationship between sensors, an undirected weighted graph G =
(V , E ,A) is introduced here, where V = {1, 2, · · · , n} is the set of sensors and E ∈ V × V is
the edge set describing the communication between sensors. The weighted adjacency matrix
A = {aij} ∈ R

n×n describes the structure of the graph G, where aij > 0 if (i, j) ∈ E , and aij = 0,
otherwise. We assume the elements of the weighted adjacency matrix A satisfies aij = aji,
∀i, j = 1, 2, · · · , n, and

∑n
j=1 aij = 1, ∀i = 1, 2, · · · , n. Thus, the adjacency matrix A is doubly

stochastic. Besides, the set of the neighbors of sensor i is denoted as Ni = {j ∈ V|(i, j) ∈ E},
and each sensor can only exchange information with its neighbors in this paper. Moreover,
a path of length � of graph G is a sequence of nodes {i1, i2, · · · , i�} satisfying (ij , ij+1) ∈ E
for all 1 ≤ j ≤ � − 1. Graph G is called connected if for any two agents i and j, there is a
path connecting them. The diameter D(G) of graph G is defined as the maximum value of the
distances between any two nodes in graph G.

2.2 Observation Model

Consider a multi-agent network consisting of n sensors, the ith (i = 1, 2, · · · , n) sensor has
the following form

{
yk+1,i = ϕT

k,iθ + dk+1,i,

sk+1,i = I{yk+1,i≤C},
k ≥ 0, (1)

where ϕk,i ∈ R
m is an m-dimensional regressor of the sensor i at time k, dk+1,i ∈ R is the noise

and θ ∈ R
m is the unknown parameter vector to be identified. And yk+1,i is a scalar output

of model i, which only can be measured by binary sensor i, where sk+1,i is the binary-valued
observation and C is a fixed threshold of binary sensor i, respectively.

Remark 1 As known, the thresholds of binary sensor have two classes, fixed thresholds
and more complicatedly time-varying thresholds. This paper investigates system identification
over binary sensor network with fixed thresholds. It is worth mentioning that the similar results
can still be obtained with time-varying thresholds, only if there exists a unified bound for these
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time-varying thresholds. More specifically, we take Ck,i as the threshold of sensor i at time k

only if there exists a positive constant C0 such that |Ck,i| ≤ C0 for all i = 1, 2, · · · , n and k ≥ 1,
then we can obtain the similar conclusion as this paper.

In order to proceed with the analysis, we introduce some assumptions concerning the priori
information of the unknown parameter, the inputs, the noises and the graph.

Assumption 1 There is a known bounded convex compact set Ω ⊂ R
n such that the

unknown parameter θ ∈ Ω . And denote θ = supη∈Ω ‖η‖.
Assumption 2 The regressor {ϕk,i, i = 1, 2, · · · , n} is Fk-measurable and satisfies

sup
k≥1

i=1,2,··· ,n

‖ϕk,i‖ = ϕ < ∞, a.s.,

where {Fk} is a sequence of nondecreasing σ-algebra and ϕ may be a random variable.

Assumption 3 For any i = 1, 2, · · · , n, the noise {dk,i} is a sequence of i.i.d. random
variables and dk,i is Fk-measurable. Besides, the probability distribution function of dk,i is
denoted by Fi(·), and the density function fi(x) = dFi(x)

dx satisfies

min
i=1,2,··· ,n

x∈[C−θϕ,C+θϕ]

fi(x) ≥ f > 0. (2)

Remark 2 Though Assumption 2 requires that the regressors are bounded almost surely,
it is always possible in the actual control systems, such as saturated control of aircraft in [28].
Besides, Assumption 3 looks complex, but it actually includes the assumption of noises in many
other studies on system identification with binary measurements, such as white noise in [19–22].
It is worth noticing that the lower bound f in (2) will be used to construct the algorithm in
this paper, which is helpful to guarantee the boundness of the Lyapunov function.

Assumption 4 The graph G is connected.

Remark 3 The assumption on the network topology is natural, avoiding isolated nodes
in the network. Besides, from Lemma 8.1.2 in [29], one can find that each entry of the matrix
Ad is positive for d ≥ D(G), where D(G) is the diameter of the graph G.

The goal of this paper is to develop a distributed algorithm to estimate the unknown pa-
rameter θ, based on the system regressors ϕk,i, the binary-valued observations sk,i and the
properties of the noises dk,i.

2.3 Distributed Recursive Projection Algorithm

Before presenting the distributed recursive projection algorithm, we give a specific projection
operator on the Ω in the following form.

Definition 1 (see [27]) For the convex compact set Ω given in Assumption 1 and any
positive definite matrix Q ∈ R

m×m, the projection operator ΠQ{·} is defined as

ΠQ{η} = arg min
ω∈Ω

‖η − ω‖Q, ∀η ∈ R
m,
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where ‖ · ‖Q is defined as

‖η‖Q =
√

ηTQη, ∀η ∈ R
m.

Remark 4 From Lemma 2.1 in [30], the projection operator given by Definition 1 satisfies

‖ω − ΠQ{η}‖Q ≤ ‖ω − η‖Q, ∀ω ∈ Ω , η ∈ R
m.

Then, by virtue of this projection operator and the diffusion strategies of the neighbor esti-
mates and covariances of regressors, the distributed recursive projection algorithm is proposed
for the system (1) as follows.

Algorithm 1 Distributed Recursive Projection Algorithm

For any given sensor i ∈ {1, 2, · · · , n}, begin with an initial estimate θ̂0,i ∈ R
m and an initial

positive definite matrix P0,i ∈ R
m×m. The algorithm is recursively defined as follows.

1: Estimation (generate θk+1,i and P k+1,i based on θ̂k,i, Pk,i, ϕk,i, sk+1,i and Fi(·)):

θk+1,i = Π
P

−1
k+1,i

{
θ̂k,i + ak,iPk,iϕk,i

(
Fi(C − ϕT

k,iθ̂k,i) − sk+1,i

)}
, (3)

P k+1,i = Pk,i − ak,ifPk,iϕk,iϕ
T
k,iPk,i, (4)

ak,i =
(
1 + fϕT

k,iPk,iϕk,i

)−1
, (5)

2: Fusion (generate θ̂k+1,i and P−1
k+1,i by a convex combination of P

−1

k+1,j and θk+1,i):

P−1
k+1,i =

∑

j∈Ni

aijP
−1

k+1,j , (6)

θ̂k+1,i = Pk+1,i

∑

j∈Ni

aijP
−1

k+1,jθk+1,j . (7)

Remark 5 This algorithm is inspired by [27], whose algorithm is for the traditional single
sensor case. They applied the specific projection operator ΠQ{·} into their algorithm, which
overcame the difficulty of the quadratic item iterations in the Lyapunov function for the general
projection operators. The proposed algorithm in this paper keeps this good characteristic
as [27] by virtue of this specific projection operator, an ingenious fusion method as [8] and some
inequalities on convex combinations of nonnegative definite matrices.

Let ωk+1,i = Fi(C − ϕT
k,iθ) − sk+1,i and Γk,i = Fi(C − ϕT

k,iθ̂k,i) − Fi(C − ϕT
k,iθ). Then,

from (3) we have

θk+1,i = Π
P

−1
k+1,i

{
θ̂k,i + ak,iPk,iϕk,i (Γk,i + ωk+1,i)

}
. (8)

Remark 6 One can verify that the sequence {ωk,i,Fk} is a martingale difference and
supk≥0 E

[|ωk+1,i|β |Fk

] ≤ 1 for all β > 0 if Assumption 3 holds.
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3 Main Results

For convenience of analysis, we introduce the following notations.

Yk := col{yk,1, yk,2, · · · , yk,n}, n × 1

Sk := col{sk,1, sk,2, · · · , sk,n}, n × 1

Φk := diag{ϕk,1, ϕk,2, · · · , ϕk,n}, mn × n

Γk := col{Γk,1, Γk,2, · · · , Γk,n}, n × 1

Dk := col{dk,1, dk,2, · · · , dk,n}, n × 1

Wk := col{ωk,1, ωk,2, · · · , ωk,n}, n × 1

Θ := col{θ, θ, · · · , θ}, mn × 1

Θ̂k := col
{

θ̂k,1, θ̂k,2, · · · , θ̂k,n

}
, mn × 1

Θ̃k := col
{

θ̃k,1, θ̃k,2, · · · , θ̃k,n

}
, where θ̃k,i := θ̂k,i − θ, mn × 1

Θk := col
{
θk,1, θk,2, · · · , θk,n

}
, mn × 1

Θ̃k := col
{

θ̃k,1, θ̃k,2, · · · , θ̃k,n

}
, where θ̃k,i := θk,i − θ, mn × 1

Pk := diag {Pk,1, Pk,2, · · · , Pk,n}, mn × mn

P k := diag
{
P k,1, P k,2, · · · , P k,n

}
, mn × mn

ak := diag {ak,1, ak,2, · · · , ak,n}, n × n

bk := ak ⊗ Im, mn × mn

A := A⊗ Im, mn × mn

where col{·} denotes the vector stacked by the specified vectors, and diag{·} denotes the block
matrix formed in a diagonal manner of the corresponding vectors or matrices.

From the notations, the model (1) can be rewritten into the following matrix form,
{

Yk+1 = ΦT
k Θ + Dk+1,

Sk+1 = S(Yk+1, C),

where S(Yk+1, C) :=
[
I{yk+1,1≤C}, I{yk+1,2≤C}, · · · , I{yk+1,n≤C}

]T.
By (8) and the notations, the algorithm (3)–(7) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = ak ⊗ Im,

Θk+1 = Π
P

−1
k+1

{
Θ̂k + bkPkΦk(Γk + Wk+1)

}
,

P k+1 = Pk − bkfPkΦkΦT
k Pk,

ak = (1 + fΦT
k PkΦk)−1,

vec {P−1
k+1} = A vec{P−1

k+1},
Θ̂k+1 = Pk+1A P

−1

k+1Θk+1,

(9)

where vec{·} denotes the operator that stacks the blocks of a block diagonal matrix on top of
each other. And ΠH {·} is defined as follows, for any positive definite matrix Hi ∈ R

m×m and
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any vector ζi ∈ R
m, i = 1, 2, · · · , n, define ΠH {ζ} := (ΠH1 {ζ1} ,ΠH2 {ζ2} , · · · ,ΠHn {ζn})T,

where H = diag{H1, H2, · · · , Hn} and ζ = col{ζ1, ζ2, · · · , ζn}.
From (9) and Pk+1A P

−1

k+1
�1 = �1, we have

Θ̃k+1 = Θ̂k+1 − Θ = Pk+1A P
−1

k+1Θk+1 − Θ

= Pk+1A P
−1

k+1(Θk+1 − Θ) = Pk+1A P
−1

k+1Θ̃k+1. (10)

Before analyzing the convergence properties of the distributed recursive projection algorithm
(3)–(7), we present a critical theorem about the relation between the estimation error and the
regressors.

Theorem 1 For the system (1), if Assumptions 1–3 hold, then the proposed algorithm
(3)–(7) has the properties as t → ∞:

t∑

k=0

Θ̃T
k ΦkΦT

k Θ̃k = O (log(rt)) , a.s.,

Θ̃T
t+1P

−1
t+1Θ̃t+1 = O (log(rt)) , a.s.,

where rt is defined as

rt = λmax(P0) +
n∑

i=1

t∑

k=0

‖ϕk,i‖2. (11)

The detailed proof of Theorem 1 is supplied in the next section.

Remark 7 From the proof of Lemma 1 and Theorem 1, we can see that the boundedness
of the regressors and the unknown parameter (in Assumptions 1 and 2) is also a necessary
condition to guarantee the convergence of the proposed algorithm in this paper. Similarly to
accurate measurements, there is a positive definite item Θ̃T

k ΦkΦT
k Θ̃k generated by the iteration

of the covariance matrix Pk in the Lyapunov function analysis under binary-valued observations,
which makes it difficult to estimate the bound of Lyapunov function. The boundedness of the
inputs and the unknown parameter is exactly used to counteract the positive definite item so
as to estimate the upper bound of the Lyapunov function.

Next, we will show the prediction ability of the distributed recursive projection algorithm
based on Theorem 1. For any i = 1, 2, · · · , n, the best prediction for the future output yk+1 in
the mean square sense is given as the following form,

E(yk+1,i|Fk) = ϕT
k,iθ + E(dk+1,i|Fk).

Then, replacing θ by its estimate θk,i gives a natural adaptive predictor of yk+1,i,

ŷk+1,i = ϕT
k,iθ̂k,i + E(dk+1,i|Fk). (12)

The difference between the best prediction and the adaptive prediction is referred to the regret
Rk,i, which is denoted by,

Rk,i = [E(yk+1,i|Fk) − ŷk+1,i]
2 = (ϕT

k,iθ̃k,i)2. (13)
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The following theorem shows the upper bound of the accumulated regrets for the adaptive
prediction (12).

Theorem 2 Under Assumptions 1–3, the sample paths of the accumulated regrets have
the following bound:

n∑

i=1

t∑

k=0

Rk,i = O(log(rt)), a.s. (14)

The proof of Theorem 2 is given in Section 4.

Remark 8 From Theorem 2, it can be seen that the averaged regrets 1
nt

∑n
i=1

∑t
k=0 Rk,i

tends to zero as t goes to infinity under essentially no excitation condition on the regressors.
Besides, there is also no need for independence, stationarity, or Gaussian assumption on system
signals.

Assumption 5 (Cooperative excitation condition in [8]) The growth rate of log
(
λmax(P−1

t )
)

is much slower than that of λmin(P−1
t ), i.e.,

lim
t→∞

log(rt)
λn,t

min

= 0, a.s.,

where rt is defined as (11) and

λn,t
min := λmin

⎛

⎝
n∑

i=1

P−1
0,i +

n∑

i=1

t−D(G)+1∑

k=0

ϕk,iϕ
T
k,i

⎞

⎠ . (15)

Remark 9 This cooperative excitation condition is the weakest possible data condition
of the distributed LS estimates under accurate measurements to the best of our knowledge.
Besause Assumption 5 could reduce to the well-known Lai-Wei excitation condition in [31],
which is known to be the weakest possible data condition for the convergence of the classical LS
estimates. Moreover, one can verify that the regressor condition in Assumption 2 and Assump-
tion 5 is much weaker than the bounded persistence excitation conditions always used in the
parameter estimation with binary-valued observations, such as ‖ϕl‖ ≤ M,

∑k+N−1
l=k ϕlϕ

T
l ≥ εIn

in [20, 21] and ‖ϕl‖ ≤ M , lim infk→∞ 1
k

∑k
l=1 ϕlϕ

T
l > 0 in [22, 23]. Thus, the bounded coop-

erative excitation condition (including Assumption 2 and Assumption 5) might be the weakest
excitation condition of the distributed parameter estimation under binary-valued observations.
Moreover, it is more general than independent signals and correlated non-stationary signals
from feedback control systems, which makes the results in this paper can be applied to feed-
back control problems with binary observations.

The following theorem shows that the estimate given by the algorithm (3)–(7) converges to
the true parameter under the bounded cooperative excitation condition.

Theorem 3 For the system (1), if Assumptions 1–4 are satisfied, then we have as t → ∞,

∥∥
∥Θ̃t+1

∥∥
∥

2

= O

(
log(rt)
λn,t

min

)

, a.s.,

where rt and λn,t
min are defined in (11) and (15), respectively.
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The detailed proof of Theorem 3 is given in Section 4.

Corollary 4 Under Assumptions 1–5, the estimate θ̂t,i given by the proposed algorithm
(3)–(7) converges to the true parameter almost surely, i.e., limt→∞ θ̃t,i = 0, i = 1, 2, · · · , n, a.s.

This conclusion can be directly given by Theorem 3 and Assumption 5.

Remark 10 From Theorem 3, we find that the proposed algorithm under binary-valued
observations can reach same convergence rate as that in [8] under accurate observations under
the same regressors condition (i.e., Assumption 2 and Assumption 5).

4 Proofs of the Main Results

Before establishing the convergence of the proposed algorithm (3)–(7), we give the following
three lemmas to show the boundness of the estimates and two inequalities between Pk and P k.

Lemma 1 With the algorithm (3)–(7), the following inequality holds
∥
∥
∥θ̂k+1,i

∥
∥
∥ ≤ θ, i = 1, 2, · · · , n,

for all k = 1, 2, · · · under Assumption 1.

Proof From Assumption 1, Definition 1 and (3), we have

‖θk+1,i‖ ≤ θ. (16)

From (6), (7), and (16) we get

∥
∥
∥θ̂k+1,i

∥
∥
∥ =

∥∥
∥
∥
∥
∥
Pk+1,i

∑

j∈Ni

aijP
−1

k+1,jθk+1,j

∥∥
∥
∥
∥
∥

≤
∥∥
∥
∥
∥
∥
Pk+1,i

∑

j∈Ni

aijP
−1

k+1,j

∥∥
∥
∥
∥
∥
· max
1≤j≤n

‖θk+1,j‖

= max
1≤j≤n

‖θk+1,j‖ ≤ θ.

From the definition of P k+1 and Pk+1, the following lemmas can be directly concluded
similarly to Lemma 4.2, Lemma 4.3 and Lemma 4.4 in [8].

Lemma 2 For any adjacency matrix A = {aij} ∈ R
n×n, denote A = A ⊗ Im, and for

all k = 1, 2, · · · ,
A Pk+1A ≤ P k+1,
∣
∣
∣P

−1

k+1

∣
∣
∣ ≤

∣
∣P−1

k+1

∣
∣ ,

where P k+1 and Pk+1 are defined in (9).

Lemma 3 With the distributed recursive projection algorithm (9), the following equality
holds

t∑

k=0

λmax(akfΦT
k PkΦk) ≤ log

∣
∣P−1

t+1

∣
∣− log

∣
∣P−1

0

∣
∣ .
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4.1 Proof of Theorem 1

Before proving Theorem 1, we need to show the following critical lemma.

Lemma 4 If Assumptions 1–3 hold, then the proposed algorithm (3)–(7) satisfies the
following relationship as t → ∞:

Θ̃T
t+1P

−1
t+1Θ̃t+1 +

(
f + o(1)

) t∑

k=0

Θ̃T
k ΦkΦT

k Θ̃k ≤ 2n

f
log |P−1

t+1| + o
(
log |P−1

t+1|
)

+ O(1), a.s.

Proof From (9) and Remark 4, we get

Θ̃
T

k+1P
−1

k+1Θ̃k+1

=
(
Π

P
−1
k+1

{
Θ̂k + bkPkΦk(Γk + Wk+1)

}
− Θ

)T

P
−1

k+1

·
(
Π

P
−1
k+1

{
Θ̂k + bkPkΦk(Γk + Wk+1)

}
− Θ

)

=
n∑

i=1

∥∥
∥ΠP

−1
k+1,i

{
θ̂k,i + ak,iPk,iϕk,i (Γk,i + ωk+1,i)

}
− θ
∥∥
∥

2

P
−1
k+1,i

≤
n∑

i=1

∥
∥
∥θ̃k,i + ak,iPk,iϕk,i (Γk,i + ωk+1,i)

∥
∥
∥

2

P
−1
k+1,i

≤
n∑

i=1

(
θ̃k,i + ak,iPk,iϕk,i (Γk,i + ωk+1,i)

)T

P
−1

k+1,i

·
(
θ̃k,i + ak,iPk,iϕk,i (Γk,i + ωk+1,i)

)

=
(
Θ̃k + bkPkΦk(Γk + Wk+1)

)T

P
−1

k+1

(
Θ̃k + bkPkΦk(Γk + Wk+1)

)
. (17)

Then, by (10), (17), and Lemma 2, the stochastic Lyapunov function Vk = Θ̃T
k P−1

k Θ̃k satisfies

Vk+1 =Θ̃T
k+1P

−1
k+1Θ̃k+1

=
(
Pk+1A P

−1

k+1Θ̃k+1

)T

P−1
k+1

(
Pk+1A P

−1

k+1Θ̃k+1

)

=Θ̃
T

k+1P
−1

k+1A Pk+1A P
−1

k+1Θ̃k+1

≤Θ̃
T

k+1P
−1

k+1Θ̃k+1

≤
(
Θ̃k + bkPkΦk(Γk + Wk+1)

)T

P
−1

k+1

(
Θ̃k + bkPkΦk(Γk + Wk+1)

)

=Θ̃T
k P

−1

k+1Θ̃k + 2Θ̃T
k P

−1

k+1bkPkΦkΓk + 2Θ̃T
k P

−1

k+1bkPkΦkWk+1

+ ΓT
k ΦT

k PkbkP
−1

k+1bkPkΦkΓk + WT
k+1Φ

T
k PkbkP

−1

k+1bkPkΦkWk+1

+ 2ΓT
k ΦT

k PkbkP
−1

k+1bkPkΦkWk+1. (18)

By (9), we have

P
−1

k+1 = P−1
k + fΦkΦT

k . (19)
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So, from (19), the first term in the right side of the equality (18) can be rewritten as

Θ̃T
k P

−1

k+1Θ̃k = Θ̃T
k P−1

k Θ̃k + fΘ̃T
k ΦkΦT

k Θ̃k = Vk + fΘ̃T
k ΦkΦT

k Θ̃k. (20)

Moreover, from the block diagonal property of ak, bk, Pk, and Φk, we get

bkPk = Pkbk, ΦT
k bk = akΦT

k , bkΦk = Φkak. (21)

From differential mean value theorem, there exists ξk,i ∈ (C − ϕT
k,iθ̂k,i, C − ϕT

k,iθ) or (C −
ϕT

k,iθ, C − ϕT
k,iθ̂k,i) such that

Γk,i = Fi(C − ϕT
k,iθ̂k,i) − Fi(C − ϕT

k,iθ) = −fi(ξk,i)ϕT
k,iθ̃k,i. (22)

Then, from Lemma 1 and Assumption 2, we get ξk,i ∈ (C − θϕ, C + θϕ). From Assumption 3,
we have

fi(ξk,i) ≥ f. (23)

By (19), (21)–(23), and ak(In + fΦT
k PkΦk) = In, we can estimate the second term in the right

side of the equality (18) as follows:

2Θ̃T
k P

−1

k+1bkPkΦkΓk =2Θ̃T
k

(
P−1

k + fΦkΦT
k

)
bkPkΦkΓk

=2Θ̃T
k Φkak

(
In + fΦT

k PkΦk

)
Γk

=2Θ̃T
k ΦkΓk

=2
n∑

i=1

θ̃T
k,iϕk,iΓk,i

= − 2
n∑

i=1

fi(ξk,i)θ̃T
k,iϕk,iϕ

T
k,iθ̃k,i

≤− 2f

n∑

i=1

θ̃T
k,iϕk,iϕ

T
k,iθ̃k,i

= − 2fΘ̃T
k ΦkΦT

k Θ̃k. (24)

Similarly to (24), the third term in the right side of the equality (18) can be estimated as,

2Θ̃T
k P

−1

k+1bkPkΦkWk+1 =2Θ̃T
k

(
P−1

k + fΦkΦT
k

)
bkPkΦkWk+1

=2Θ̃T
k Φkak

(
In + fΦT

k PkΦk

)
Wk+1

=2Θ̃T
k ΦkWk+1. (25)

From (19), (21), and In = ak + akfΦT
k PkΦk, we have

ΦT
k PkbkP

−1

k+1bkPkΦk =ΦT
k Pkbk(P−1

k + fΦkΦT
k )bkPkΦk

=ΦT
k Pkb2

kΦk + fΦT
k PkbkΦkΦT

k bkPkΦk

=a2
kΦ

T
k PkΦk + akfΦT

k PkΦkakΦT
k PkΦk

=a2
kΦ

T
k PkΦk + (In − ak)akΦT

k PkΦk

=akΦT
k PkΦk. (26)
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Then, from (26), Assumption 3 and |Γk,i| ≤ 1, the fourth term in the right side of the equal-
ity (18) can be estimated as,

ΓT
k ΦT

k PkbkP
−1

k+1bkPkΦkΓk =ΓT
k akΦT

k PkΦkΓk

=
n∑

i=1

ak,iϕ
T
k,iPk,iϕk,iΓ 2

k,i

≤n‖akΦT
k PkΦk‖

=nλmax(akΦT
k PkΦk). (27)

From (26), we can rewrite the fifth and sixth terms in the right side of the equality (18) as

WT
k+1Φ

T
k PkbkP

−1

k+1bkPkΦkWk+1 = WT
k+1akΦT

k PkΦkWk+1 (28)

and

2ΓT
k ΦT

k PkbkP
−1

k+1bkPkΦkWk+1 = 2ΓT
k akΦT

k PkΦkWk+1. (29)

Taking (20), (24)–(25) and (27)–(29) into (18) gives

Vk+1 ≤Vk − fΘ̃T
k ΦkΦT

k Θ̃k + nλmax(akΦT
k PkΦk) + 2Θ̃T

k ΦkakWk+1

+ 2ΓT
k akΦT

k PkΦkWk+1 + WT
k+1akΦT

k PkΦkWk+1. (30)

For (30), summing from k = 0 to t yields

Vt+1 + f

t∑

k=0

Θ̃T
k ΦkΦT

k Θ̃k ≤V0 + n

t∑

k=0

λmax(akΦT
k PkΦk) + 2

t∑

k=0

Θ̃T
k ΦkWk+1

+ 2
t∑

k=0

ΓT
k akΦT

k PkΦkWk+1 +
t∑

k=0

WT
k+1akΦT

k PkΦkWk+1. (31)

Next, we estimate the third and fourth terms in the side of the equality (31). By Remark
6, Θ̃T

k Φk ∈ Fk, akfΦT
k PkΦk = In − ak and 0 < ak ≤ In, we can get the following estimates for

any δ > 0 using the martingale estimation theorem (Theorem 2.8 in [32]):

t∑

k=0

Θ̃T
k ΦkWk+1 =O

⎛

⎝

[
t∑

k=0

∥
∥∥Θ̃T

k ΦkΦT
k Θ̃k

∥
∥∥

] 1
2+δ
⎞

⎠ , a.s. (32)

and

t∑

k=0

ΓT
k akΦT

k PkΦkWk+1 =O

⎛

⎝
[

t∑

k=0

∥
∥ΓT

k akΦT
k PkΦkΦT

k PkΦkakΓk

∥
∥
] 1

2+δ
⎞

⎠

=O

⎛

⎝

[
t∑

k=0

n
∥
∥akΦT

k PkΦk

∥
∥2

] 1
2+δ
⎞

⎠
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≤O

⎛

⎝
[

t∑

k=0

n

f

∥
∥akΦT

k PkΦk

∥
∥
] 1

2+δ
⎞

⎠

=O

⎛

⎝

[
t∑

k=0

∥∥akΦT
k PkΦk

∥∥
] 1

2+δ
⎞

⎠ , a.s. (33)

By (32), (33), and taking 0 < δ < 1
2 , we have

t∑

k=0

Θ̃T
k ΦkWk+1 =o

(
t∑

k=0

∥
∥
∥Θ̃T

k ΦkΦT
k Θ̃k

∥
∥
∥

)

+ O(1), a.s. (34)

and

t∑

k=0

ΓT
k akΦT

k PkΦkWk+1 =o

(
t∑

k=0

∥
∥akΦT

k PkΦk

∥
∥
)

+ O(1), a.s. (35)

We now proceed to estimate the last term in (31).

WT
k+1akΦT

k PkΦkWk+1 ≤ ‖akΦT
k PkΦk‖ · ‖Wk+1‖2 = λmax(akΦT

k PkΦk) ·
{

n∑

i=1

ω2
k+1,i

}

. (36)

Denote a martingale difference sequence �k+1 =
∑n

i=1 ω2
k+1,i − E[

∑n
i=1 ω2

k+1,i|Fk]. By
Remark 6, Cr-inequality (Theorem 1.2.12 in [33]) and Lyapunov inequality (below Theorem 1.4
in [32]), it is easy to see that for any α ∈ (2, min(β, 4)),

sup
k

E[�
α
2
k+1|Fk] = sup

k
E

⎡

⎣
(

n∑

i=1

ω2
k+1,i − E

[
n∑

i=1

ω2
k+1,i|Fk

])α
2
∣
∣
∣
∣
∣
Fk

⎤

⎦

≤ 4 sup
k

E

[
n∑

i=1

|ωk+1,i|α
∣
∣
∣
∣
∣
Fk

]

< ∞, a.s.

Then, by the martingale estimation theorem (Theorem 2.8 in [32]), we have for any η > 0,

t∑

k=0

λmax(akΦT
k PkΦk)

(
n∑

i=1

(ωk+1,i)2 − E

[
n∑

i=1

(ωk+1,i)2
∣
∣∣
∣
∣
Fk

])

=O

(
St

(α

2

) [
log
(
St

(α

2

)
+ e
)] 2

α +η
)

, a.s., (37)

where

St

(α

2

)
=

[
t∑

k=0

(λmax(akΦT
k PkΦk))

α
2

] 2
α

=
1
f

[
t∑

k=0

(λmax(akfΦT
k PkΦk))

α
2

] 2
α

.

Since α
2 > 1, akfΦT

k PkΦk ≤ In and Lemma 3 we have

St

(α

2

)
= O(1) + o

(
log |P−1

t+1|
)
.
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From (36)–(37), Remark 6 and Lemma 3, we get

WT
k+1akΦT

k PkΦkWk+1

≤λmax(akΦT
k PkΦk)

(

E

[
n∑

i=1

ω2
k+1,i

∣
∣
∣
∣Fk

]

+
n∑

i=1

ω2
k+1,i − E

[
n∑

i=1

ω2
k+1,i

∣
∣
∣
∣Fk

])

=n

t∑

k=0

λmax(akΦT
k PkΦk) + O(1) + o

(
log |P−1

t+1|
)

=
n

f
log |P−1

t+1| + o(log |P−1
t+1|) + O(1), a.s. (38)

Finally, from Lemma 3 , taking (34), (35), and (38) into (31) gives

Θ̃T
t+1P

−1
t+1Θ̃t+1 +

(
f + o(1)

) t∑

k=0

Θ̃T
k ΦkΦT

k Θ̃k ≤ 2n

f
log |P−1

t+1| + o
(
log |P−1

t+1|
)

+ O(1), a.s.

This completes the proof.
Based on Lemma 4, we give the proof of Theorem 1 as follows.
Proof of Theorem 1

Proof From (6) we get that for any t ≥ 0,

P−1
t+1,i =

n∑

j=1

aijP
−1

t+1,j =
n∑

j=1

aij

[
P−1

t,j + fϕt,jϕ
T
t,j

]
.

Therefore, we have

max
1≤i≤n

λmax

(
P−1

t+1,i

) ≤ max
1≤i≤n

n∑

j=1

aij

[
λmax

(
P−1

t,j

)
+ fλmax(ϕt,jϕ

T
t,j)
]

≤ max
1≤i≤n

λmax

(
P−1

t,i

) n∑

j=1

aij + f

n∑

j=1

λmax(ϕt,jϕ
T
t,j)

≤ max
1≤i≤n

λmax

(
P−1

t,i

)
+ f

n∑

j=1

‖ϕt,j‖2

≤ max
1≤i≤n

λmax

(
P−1

t−1,i

)
+ f

n∑

j=1

t∑

k=t−1

‖ϕk,j‖2

≤ · · ·

≤ max
1≤i≤n

λmax

(
P−1

0,i

)
+ f

n∑

j=1

t∑

k=0

‖ϕk,j‖2

= λmax

(
P−1

0

)
+ f

n∑

j=1

t∑

k=0

‖ϕk,j‖2. (39)

From (39) and the connection between determinant and eigenvalues of the matrix, one can
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conclude that

log(|P−1
t+1|) ≤ mn log

(
max

1≤i≤n
λmax

(
P−1

t+1,i

)
)

≤ mn log(rt) + O(1). (40)

Consequently, Theorem 1 follows from (40) and Lemma 4 immediately.

4.2 Proof of Theorem 2

Proof From (13), we have

n∑

i=1

t∑

k=0

Rk,i =
n∑

i=1

t∑

k=0

(ϕT
k,iθ̃k,i)2 =

t∑

k=0

Θ̃T
k ΦkΦT

k Θ̃k. (41)

Then, substituting (41) into Theorem 1 gives (14) immediately.

4.3 Proof of Theorem 3

Proof From Assumption 4 and Remark 3, we have a
(DG)
ij ≥ a, where a = mini,j∈V a

(DG)
ij >

0, DG is diameter of the graph G. And, one can also prove that a
(d)
ij ≥ a by induction when

k ≥ DG , where Ad =
{
a
(d)
ij

}
. By (9) and (19), it can be seen

vec{P−1
t+1} = A vec{P−1

t+1}
= A vec{P−1

t } + fA vec{ΦtΦT
t }

= A 2 vec{P−1
t−1} + fA 2 vec{Φt−1ΦT

t−1} + fA vec{ΦtΦT
t }

= · · ·

= A t+1 vec{P−1
0 } + f

t∑

k=0

A t−k+1 vec{ΦkΦT
k },

which implies

P−1
t+1,i =

n∑

j=1

a
(t+1)
ij P−1

0,j +
n∑

j=1

t∑

k=0

a
(t−k+1)
ij fϕk,jϕ

T
k,j

≥ a

n∑

j=1

P−1
0,j + af

n∑

j=1

t−DG+1∑

k=0

ϕk,jϕ
T
k,j .

Hence, we have

λmin

(
P−1

t+1

) ≥ min
{
a, af

} · λmin

⎛

⎝
n∑

j=1

P−1
0,j +

n∑

j=1

t−DG+1∑

k=0

ϕk,jϕ
T
k,j

⎞

⎠ . (42)

Noticing that

∥
∥
∥Θ̃t+1

∥
∥
∥

2

≤ Θ̃T
t+1

P−1
t+1

λmin

(
P−1

t+1

) Θ̃t+1,
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we have

∥∥
∥Θ̃t+1

∥∥
∥

2

= O

(
log(rt)
λn,t

min

)

, a.s.,

by (42) and Theorem 1. The proof is completed.

5 Simulation

In this section, we illustrate the cooperative effect of the sensors by Example 1, i.e., the
sensors in the network can achieve the estimation task that cannot be realized by any individual
sensor through exchanging information between sensors. Besides, we also show the property of
the averaged regret.

Example 1 The network is composed of n = 3 binary sensors whose dynamics obey the
equation (1) with m = 3, and the threshold of binary sensors is C = 0. The adjacency matrix
is taken as

A =

⎛

⎜
⎜
⎝

2/3 1/3 0

1/3 1/2 1/6

0 1/6 5/6

⎞

⎟
⎟
⎠ .

Set the unknown parameter as θ = [−1, 1,−2]T, and the prior information of the unknown
parameter is θ ∈ Ω = [−2, 2] × [−3, 3] × [−4, 4]. The system noises {dk,i}, i = 1, 2, 3, in (1)
are i.i.d. with dk,i ∼ N(0, 42) (Gaussian distribution with zero mean and variance 42). Let the
regressors ϕk,i (i = 1, 2, 3) be generated as follows:

ϕk,1 =

⎛

⎜
⎜
⎝

1 − 1/3k

0

0

⎞

⎟
⎟
⎠ , ϕk,2 =

⎛

⎜
⎜
⎝

0

−1 + 1/4k

0

⎞

⎟
⎟
⎠ , ϕk,3 =

⎛

⎜
⎜
⎝

0

0

1 − 1/2k

⎞

⎟
⎟
⎠ , k ≥ 1.

One can verify that the regressors ϕk,i (i = 1, 2, 3) of the three sensors can cooperate to satisfy
Assumptions 2 and 5. Besides, we take f = 0.04 from ϕ = 1, θ =

√
29 and dk,i ∼ N(0, 42).

Then we repeat the simulation for 100 times with the same initial values, where P0,1 = P0,2 =
P0,3 = I3. The mean square errors (MSE) of the three sensors (averaged over 100 runs) are
shown in Figure 1. From it, we learn that the proposed algorithm (3)–(7) can achieve the
distributed parameter estimation with binary-valued observations.
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Figure 1 MSEs of the distributed recursive projection algorithm

Moreover, the averaged regret 1
3k

∑3
i=1

∑k
l=0 Rl,i is showed in Figure 2, which implies that

the averaged regrets tends to zero as k goes to infinity.
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Figure 2 The averaged regrets

Furthermore, from λmax(P0,i) +
∑t

k=0 ‖ϕk,i‖2 ≤ t + 1 and λmin

(
P−1

0,i +
∑t

k=0 ϕk,iϕ
T
k,i

)
= 0

for all i = 1, 2, 3, we can see that none of the regressors ϕk,i, i = 1, 2, 3, of the three individual
sensors can satisfy the excitation condition, i.e.,

lim
t→∞

log
(
λmax(P0,i) +

∑t
k=0 ‖ϕk,i‖2

)

λmin

(
P−1

0,i +
∑t

k=0 ϕk,iϕT
k,i

) = 0, a.s.
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Figure 3 shows the trajectory of the MSE of three sensors using the non-cooperative algo-
rithm, i.e., the algorithm (3)–(7) with A = In. Comparing Figure 1 and Figure 3, we learn that
the MSE of each sensor using the non-cooperative algorithm does not converge to zero while
the estimate given by the distributed recursive projection algorithm (3)–(7) converges to the
true parameter, which shows the joint effect of the sensors.
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Figure 3 MSEs of the non-cooperative algorithm

6 Concluding Remarks

This paper has investigated a distributed recursive projection algorithm to estimate coop-
eratively the unknown parameter in the sensor network under binary-valued observations. For
the adaptive predictor based on the proposed algorithm, we establish the upper bound of the
accumulated regrets with no excitation condition on the regressors, which implies the averaged
regret tends to zero as t increases to infinity. Then, we introduce the weakest cooperative exci-
tation condition with binary-valued observations to the best of our knowledge, under which the
almost sure convergence of the proposed algorithm are proved. Besides, we reveal the operative
effect of the sensors through a numerical example. Furthermore, the results in this paper are
obtained without relying on the independent or periodic assumptions on the regressors com-
pared with most of the existing results, which makes it possible to apply our results to the
feedback control systems with binary observations.

There are still lots of interesting problems for further research. For example, to consider
the distributed algorithm with general projection (see [20, 22]) instead of this special projec-
tion, to consider the distributed optimal algorithm that can reach Cramér-Rao lower bound
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based on [23], to consider the distributed estimation problem for more general systems such as
ARMAX systems in [34, 35], etc.
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[30] Calamai P H and Moré J J, Projected gradient methods for linearly constrained problems, Math-

ematical Programming, 1987, 39: 93–116.

[31] Lai T L and Wei C Z, Least squares estimates in stochastic regression models with applications

to identification and control dynamic systems, Annals of Statistics, 1982, 10(1): 154–166.

[32] Chen H F and Guo L, Identification and Stochastic Adaptive Control, Birkhäsuser, Boston, 1991.

[33] Guo L, Time-Varying Stochastic Systems Stability, Estimation and Control, Second Edition,

Science Press, Beijing, 2020.

[34] Jing L and Zhang J F, Tracking control and parameter identification with quantized ARMAX

systems, Science China Information Sciences, 2019, 62(9): 199203.

[35] Jing L and Zhang J F, LS-based parameter estimation of DARMA systems with uniformly quan-

tized observations, Journal of Systems Science and Complexity, 2021, DOI: 10.1007/s11424-021-

0314-y.


